The Community in more languages
Now the forum welcomes more languages.
You'll see a green translate button in comments and discussions to turn them into English
‘Particles and polar attraction - Earth is constantly bombarded with debris, radiation and other magnetic waves from space that could threaten the future of life as we know it. Most of the time, the planet's own magnetic field does an excellent job of deflecting these potentially harmful rays and particles, including those from the sun.
Particles discharged from the sun travel 93 million miles (around 150 million km) toward Earth before they are drawn irresistibly toward the magnetic north and south poles. As the particles pass through the Earth's magnetic shield, they mingle with atoms and molecules of oxygen, nitrogen and other elements that result in the dazzling display of lights in the sky.
The auroras in Earth's Northern Hemisphere are called the aurora borealis. Their southern counterpart, which light up the Antarctic skies in the Southern Hemisphere, are known as the aurora.
What causes the colors? - The colors most often associated with the aurora borealis are pink, green, yellow, blue, violet, and occasionally orange and white. Typically, when the particles collide with oxygen, yellow and green are produced. Interactions with nitrogen produce red, violet, and occasionally blue colors.
The type of collision also makes a difference to the colors that appear in the sky: atomic nitrogen causes blue displays, while molecular nitrogen results in purple. The colors are also affected by altitude. The green lights typically in areas appear up to 150 miles (241 km) high, red above 150 miles; blue usually appears at up to 60 miles (96.5 km); and purple and violet above 60 miles.
These lights may manifest as a static band of light, or, when the solar flares are particularly strong, as a dancing curtain of ever-changing color.
When to see the lights - The northern lights are always present, but winter is usually the best time to see them, due to lower levels of light pollution and the clear, crisp air. September, October, March and April are some of the best months to view the aurora borealis. The lights are known to be brighter and more active for up to two days after sunspot activity is at its highest. Several agencies, such as NASA and the National Oceanic and Atmospheric Administration, also monitor solar activity and issue aurora alerts when they are expected to put on a particularly impressive show.’ (Source)
Let’s continue - Frequently asked questions
Start at the beginning – Tiffi and her friends learn all about the Northern Lights