The Community in more languages
Now the forum welcomes more languages.
You'll see a green translate button in comments and discussions to turn them into English
‘What makes yo-yos go up and down?
A yo-yo might look like a toy, but it's also an energy converting machine. Understanding how it constantly changes energy from one kind into another is the key to figuring out how it works. If you're not familiar with scientific terms like potential energy and kinetic energy, you might want to browse through our energy article before you go any further.
When you hold a yo-yo in your hand, it has potential energy: it stores energy because it's high above the floor. When you release it, the potential energy is gradually converted into kinetic energy (the energy something has because it's moving). When a yo-yo is spinning at the bottom of its string, virtually all the potential energy it had originally has been converted into kinetic energy. As a yo-yo climbs up and down its string, it is constantly exchanging potential and kinetic energy—much like a rollercoaster car.
A spinning yo-yo actually has two different kinds of kinetic energy: one kind because it's moving up and down the string and another kind because it's spinning around. When you release the yo-yo from your hand, it falls toward the ground just like a stone, and it picks up speed because it's falling. But a yo-yo is different from a stone because it has string wrapped around its axle. As it falls, it starts to spin. That's why a yo-yo falls much more slowly than a stone: some of the energy that should be making it fall quickly is actually being used to make it spin around at the same time.
Whatever it's doing, and wherever it is on the string, a yo-yo usually has a mixture of three different kinds of energy
1.- Potential energy—because it's a certain height above the floor.
2.- Kinetic energy of movement—because it's moving up or down relative to the floor.
3.- inetic energy of rotation—because it's spinning around.’ (Source)
Let’s continue - Science of yo-yos continued
Start at the beginning – Let’s learn how to use a yo-yo